A Data Driven Technique for Diagnosing Retinal Dystrophies

Benjamin Katz, Vittorio Bichucher, Richmond Starbuck, Wei Xu, Jacob Durrah, Dana Schlegel, Thiran Jayasundera, Andrew DeOrio
University of Michigan College of Engineering and Kellogg Eye Center, Ann Arbor, MI

Background

Retinal dystrophies are genetic conditions associated with reduced or deteriorating vision that may lead to blindness.

Current diagnosis techniques: specialists test specific genes using gene-sequencing techniques for probable disease-causing variants.

Problem: can be prohibitively expensive and require specialists to interpret results. Therefore, many patients lack conclusive molecular diagnosis critical to providing proper treatment, as many therapies are gene specific.

Solution: A supervised model that predicts the likelihood of a particular disease-causing gene being mutated. This may help inform providers about appropriate genetic testing panels to order as well as assist ophthalmologists in analyzing inconclusive genetic testing results.

Data set

- Labeled data set: mutated gene confirmed by specialist for each patient through genetic testing.
- Only patients with a single mutation previously reported to be disease causing were included.
- Genes with fewer than five occurrences in the data set were filtered out.

Procedure

Results were obtained by randomly selecting 80% of the data to train the model and validating the results by testing on the remaining 20%. Both sets were stratified. This procedure was repeated 20 times, and results averaged over all trials.

Experimental Results

Calibration plot and Brier score (in legend) of RBF SVM and naïve model. Lower score implies predictions can be more accurately interpreted as a confidence level.

Results

- Results compared to naïve model that predicts the class priors from the training data.
- RBF SVM predicted the disease-causing mutations with lower Brier score than naïve model (P value < 0.0001).
- RBF SVM had a higher accuracy than the naïve model when considering the top n predictions returned by the model (P value < 0.001).

The majority of genes were predicted with greater than 50% accuracy by the RBF SVM’s top prediction, despite the data set being highly imbalanced.

Conclusion

- 90% of the time the true disease-causing gene is predicted as one of the top 3 model outputs.
- Model gives effective predictions for a majority of genes, despite small, imbalanced data set.

Future Work

- Collect more data to improve predictions and to include more genes in the model.
- Refine features extracted from FAF images.
- Improve features extracted from patient family history.

Acknowledgements

We would like to thank our sponsors at Kellogg Eye Center and the U-M Multidisciplinary Design Program for their generous support.